Class KalmanFilter


  • public class KalmanFilter
    extends Object
    Kalman filter class. The class implements a standard Kalman filter <http://en.wikipedia.org/wiki/Kalman_filter>, CITE: Welch95 . However, you can modify transitionMatrix, controlMatrix, and measurementMatrix to get an extended Kalman filter functionality. Note: In C API when CvKalman\* kalmanFilter structure is not needed anymore, it should be released with cvReleaseKalman(&kalmanFilter)
    • Field Detail

      • nativeObj

        protected final long nativeObj
    • Constructor Detail

      • KalmanFilter

        protected KalmanFilter​(long addr)
      • KalmanFilter

        public KalmanFilter()
      • KalmanFilter

        public KalmanFilter​(int dynamParams,
                            int measureParams,
                            int controlParams,
                            int type)
        Parameters:
        dynamParams - Dimensionality of the state.
        measureParams - Dimensionality of the measurement.
        controlParams - Dimensionality of the control vector.
        type - Type of the created matrices that should be CV_32F or CV_64F.
      • KalmanFilter

        public KalmanFilter​(int dynamParams,
                            int measureParams,
                            int controlParams)
        Parameters:
        dynamParams - Dimensionality of the state.
        measureParams - Dimensionality of the measurement.
        controlParams - Dimensionality of the control vector.
      • KalmanFilter

        public KalmanFilter​(int dynamParams,
                            int measureParams)
        Parameters:
        dynamParams - Dimensionality of the state.
        measureParams - Dimensionality of the measurement.
    • Method Detail

      • getNativeObjAddr

        public long getNativeObjAddr()
      • __fromPtr__

        public static KalmanFilter __fromPtr__​(long addr)
      • predict

        public Mat predict​(Mat control)
        Computes a predicted state.
        Parameters:
        control - The optional input control
        Returns:
        automatically generated
      • predict

        public Mat predict()
        Computes a predicted state.
        Returns:
        automatically generated
      • correct

        public Mat correct​(Mat measurement)
        Updates the predicted state from the measurement.
        Parameters:
        measurement - The measured system parameters
        Returns:
        automatically generated
      • get_statePre

        public Mat get_statePre()
      • set_statePre

        public void set_statePre​(Mat statePre)
      • get_statePost

        public Mat get_statePost()
      • set_statePost

        public void set_statePost​(Mat statePost)
      • get_transitionMatrix

        public Mat get_transitionMatrix()
      • set_transitionMatrix

        public void set_transitionMatrix​(Mat transitionMatrix)
      • get_controlMatrix

        public Mat get_controlMatrix()
      • set_controlMatrix

        public void set_controlMatrix​(Mat controlMatrix)
      • get_measurementMatrix

        public Mat get_measurementMatrix()
      • set_measurementMatrix

        public void set_measurementMatrix​(Mat measurementMatrix)
      • get_processNoiseCov

        public Mat get_processNoiseCov()
      • set_processNoiseCov

        public void set_processNoiseCov​(Mat processNoiseCov)
      • get_measurementNoiseCov

        public Mat get_measurementNoiseCov()
      • set_measurementNoiseCov

        public void set_measurementNoiseCov​(Mat measurementNoiseCov)
      • get_errorCovPre

        public Mat get_errorCovPre()
      • set_errorCovPre

        public void set_errorCovPre​(Mat errorCovPre)
      • get_gain

        public Mat get_gain()
      • set_gain

        public void set_gain​(Mat gain)
      • get_errorCovPost

        public Mat get_errorCovPost()
      • set_errorCovPost

        public void set_errorCovPost​(Mat errorCovPost)