Package org.opencv.video
Class KalmanFilter
- java.lang.Object
-
- org.opencv.video.KalmanFilter
-
public class KalmanFilter extends Object
Kalman filter class. The class implements a standard Kalman filter <http://en.wikipedia.org/wiki/Kalman_filter>, CITE: Welch95 . However, you can modify transitionMatrix, controlMatrix, and measurementMatrix to get an extended Kalman filter functionality. Note: In C API when CvKalman\* kalmanFilter structure is not needed anymore, it should be released with cvReleaseKalman(&kalmanFilter)
-
-
Field Summary
Fields Modifier and Type Field Description protected long
nativeObj
-
Constructor Summary
Constructors Modifier Constructor Description KalmanFilter()
KalmanFilter(int dynamParams, int measureParams)
KalmanFilter(int dynamParams, int measureParams, int controlParams)
KalmanFilter(int dynamParams, int measureParams, int controlParams, int type)
protected
KalmanFilter(long addr)
-
Method Summary
-
-
-
Constructor Detail
-
KalmanFilter
protected KalmanFilter(long addr)
-
KalmanFilter
public KalmanFilter()
-
KalmanFilter
public KalmanFilter(int dynamParams, int measureParams, int controlParams, int type)
- Parameters:
dynamParams
- Dimensionality of the state.measureParams
- Dimensionality of the measurement.controlParams
- Dimensionality of the control vector.type
- Type of the created matrices that should be CV_32F or CV_64F.
-
KalmanFilter
public KalmanFilter(int dynamParams, int measureParams, int controlParams)
- Parameters:
dynamParams
- Dimensionality of the state.measureParams
- Dimensionality of the measurement.controlParams
- Dimensionality of the control vector.
-
KalmanFilter
public KalmanFilter(int dynamParams, int measureParams)
- Parameters:
dynamParams
- Dimensionality of the state.measureParams
- Dimensionality of the measurement.
-
-
Method Detail
-
getNativeObjAddr
public long getNativeObjAddr()
-
__fromPtr__
public static KalmanFilter __fromPtr__(long addr)
-
predict
public Mat predict(Mat control)
Computes a predicted state.- Parameters:
control
- The optional input control- Returns:
- automatically generated
-
predict
public Mat predict()
Computes a predicted state.- Returns:
- automatically generated
-
correct
public Mat correct(Mat measurement)
Updates the predicted state from the measurement.- Parameters:
measurement
- The measured system parameters- Returns:
- automatically generated
-
get_statePre
public Mat get_statePre()
-
set_statePre
public void set_statePre(Mat statePre)
-
get_statePost
public Mat get_statePost()
-
set_statePost
public void set_statePost(Mat statePost)
-
get_transitionMatrix
public Mat get_transitionMatrix()
-
set_transitionMatrix
public void set_transitionMatrix(Mat transitionMatrix)
-
get_controlMatrix
public Mat get_controlMatrix()
-
set_controlMatrix
public void set_controlMatrix(Mat controlMatrix)
-
get_measurementMatrix
public Mat get_measurementMatrix()
-
set_measurementMatrix
public void set_measurementMatrix(Mat measurementMatrix)
-
get_processNoiseCov
public Mat get_processNoiseCov()
-
set_processNoiseCov
public void set_processNoiseCov(Mat processNoiseCov)
-
get_measurementNoiseCov
public Mat get_measurementNoiseCov()
-
set_measurementNoiseCov
public void set_measurementNoiseCov(Mat measurementNoiseCov)
-
get_errorCovPre
public Mat get_errorCovPre()
-
set_errorCovPre
public void set_errorCovPre(Mat errorCovPre)
-
get_gain
public Mat get_gain()
-
set_gain
public void set_gain(Mat gain)
-
get_errorCovPost
public Mat get_errorCovPost()
-
set_errorCovPost
public void set_errorCovPost(Mat errorCovPost)
-
-